Trigger, reconstruction and physics performances in LHCb

Cristina Lazzeroni (on behalf of the LHCb Collaboration)

Physics motivation

Current sensitivities from b-factories

LHCb will study all types of B mesons with excellent precision

New physics

- Standard model is a low-energy effective theory of a more fundamental theory at higher energy scale (TeV range)
- *New physics can be discovered and studied :*
 - Direct observation: new physics produced and discovered as real particles
 - Indirect approach: new physics appear as virtual particles in loop processes

- Observable deviations from SM expectations in flavour physics and CPV
- LHCb designed to make precision measurement of CPV and rare decays in B system

The LHCb detector

Details of the detector: see B.Pietrzyk

LHCb environment

LHCb is a forward spectrometer (10-300 mrad)

 \sqrt{s} = 14 TeV, pp collisions: large σ_{bb} ~ 500 μb but σ_{bb}/σ_{tot} ~ 5x10-3

Interesting B decays have low BR ~10⁻⁵

LHCb average
$$\mathcal{L} \sim 2 \times 10^{32} \text{ cm}^{-2}\text{s}^{-1}$$

 $\rightarrow 2 \text{ fb}^{-1} / \text{ year } (10^7 \text{ s})$

 \rightarrow 10¹² bb produced/year most events due to single interactions per bunch crossing

HCP2006

A typical LHCb event

Trigger output

L0 efficiency Hadronic dominated Muon dominated Ecal dominated

on signal channels

HLT Output rate	Trigger Type	Physics Use
200 Hz	Exclusive B candidates	Specific final states
600 Hz	High Mass di-muons	J/ψ, b→J/ψX
300 Hz	D* Candidates	Charm, calibrations
900 Hz	Inclusive b (e.g. b→μ)	B data mining

- Rough estimate at present (split between streams still to de determined)
- Inclusive streams used for calibration and control of systematics

Tracking performance

$\delta p/p \sim 0.37\%$

On average:

26 long tracks

11 upstream tracks

4 downstream tracks

5 T tracks

26 VELO tracks

Blue = reconstructed tracks

Vertex reconstruction

Proper time t=L×m/(p×c)

Proper time resolution is dominated by B vertex resolution

24/05/2006

Neutral reconstruction

Good efficiency for π^0 in $B^0 \rightarrow \pi^+ \pi \pi^0$, using both resolved (separate clusters) and merged cluster shapes in the calorimeter

HCP2006

11

Particle identification

 π/K separation provided by *RICH for 2*<*p*<*100 GeV*:

$$<\varepsilon(K\rightarrow K,p)>=83\%$$

$$<\varepsilon(\pi \rightarrow K,p)> = 6\%$$

Clean separation of two-body B decays,

Details of particle identification: see C.Jones' talk

Mass resolution

Mass of $B_s \rightarrow D_s^- (KK\pi) K^+$

Flavour tagging

Tag	$\varepsilon D^2 = \varepsilon (1-2w)^2$		
Opposite µ	0.7%-1.8%		
Opposite e	0.4%-0.6%		
Opposite K	1.6%-2.4%		
Opposite Q _{vtx}	0.9%-1.3%		
Same side π (B ⁰)	0.8%-1.0%		
Same side $K(B_s)$	2.7%-3.3%		
Combined (B ⁰)	4%-5%		
Combined (B _s)	7%-9%		

Opposite side:

- *High-Pt leptons*
- $K^{\pm} from \ b \rightarrow c \rightarrow s$
- Vertex charge
- Jet charge

Same side:

- Fragmentation K[±] accompanying B_s
- π^{\pm} from $B^{**} \rightarrow B^{(*)} \pi^{\pm}$

Figure of merit:

 $\varepsilon D^2 = \varepsilon (1-2\omega)^2$: tagging power in %

ε: tagging efficiency;

ω: wrong tagging fraction

Obtained from fully simulated signal events passing trigger and selection

LHCb Physics programme

- ■B_s oscillation frequency, phase and $\Delta\Gamma_s$ ■B_s→D_sπ, J/ΨΦ, J/Ψη, n_sΦ
- • α from $B_d \rightarrow \pi^0 \pi^- \pi^+$
- - ■*And* β *from* $b \rightarrow s$ *penguin*

■γ in various channels, differing sensitivity to new physics:

- Time-dependent CP asymmetry of $B_s \rightarrow D_s^- K^+$ and $D_s^+ K^-$
- Time dependent CP asymmetries of $B_d \rightarrow \pi^+\pi^-$ and $B_s \rightarrow K^+K^-$
- ■Comparison of decay rates in the $B_d \rightarrow D^0 K^{*0}$ system
- Comparison of decay rates in the $B^- \rightarrow D^0 K^-$ system
- Dalitz analysis of $B^- \to D^0 K^-$ and $B_d \to D^0 K^{*0}$

•Rare decays

- Radiative penguin $B_d \to K^* \gamma$, $B_s \to \Phi \gamma$, $B_d \to \omega \gamma$
- ■*Electroweak penguin* $B_d \rightarrow K^{*0} \mu^+ \mu^-$
- **■**Gluonic penguin $B_s \to \Phi\Phi$, $B_d \to \Phi K_s$
- Rare box diagram $B_s \rightarrow \mu^+\mu^-$
- •B_c, b-baryon physics + unexpected!

Sensitivity studies

• For all the sensitivity studies, we use toy MC with detector resolutions extracted from a full Geant simulation of the events

Annual yields estimated with full simulated Geant events

• Sample of 40 million fully simulated and reconstructed b-inclusive decays are used for the B/S estimates

$$B^{\pm} \rightarrow D^0 K^{\pm}$$

 γ can be extracted from the interference of these two processes in charged $B \rightarrow D^0 K$ decays with D^0/D^0 decaying to a common final state

- r_B is the relative colour and CKM suppression between the two modes O(0.1) dilutes sensitivity to γ
- ullet δ is the strong phase difference invariant under CP
- Two types of D^0 decays under study: Cabibbo favoured self-conjugate decays e.g. $K_s\pi\pi$ - sensitivity under study Cabibbo favoured/doubly Cabibbo suppressed modes e.g. $K\pi,K\pi\pi\pi$

γ from $B^{\pm} \rightarrow D^0 K^{\pm}$, ADS method

Reversed suppression of D decays versus B decays results in similar amplitudes, So big interference effect

Measure relative rates (no need for tagging or time asymmetry)

With
$$r_B = 0.15$$
:
Cabibbo favoured: ~60K events for 2fb⁻¹
Cabibbo suppressed: ~2K events for 2fb⁻¹
50 times more than b-factories

Rates depend on 5 parameters: γ , r_B , δ_B , $r_D^{K\pi}$ (magnitude of the ratio between two D decays) $\delta_D^{K\pi}$ (CP conserving strong phase difference)

Suppressed rates have O(1) interference effects since $r_B \sim r_D$ Particularly sensitive to γ

$\gamma from B^{\pm} \longrightarrow D^0 K^{\pm}$

Relative rates more unknown than equations Use other decays e.g. $K\pi\pi\pi$ or KK, $\pi\pi$

Inputs:
$$\gamma = 60^{\circ}$$
, $\delta_R = 130^{\circ}$, $r_R = 0.15$

Fit for
$$r_B$$
, δ_B , $\delta_D^{K\pi}$, $\delta_D^{K3\pi}$, γ

No background: $\sigma(\gamma) \sim 3.9^{\circ}$

Adding background:

		B/S π K, KK, $\pi\pi$				
		0	1,	2	5	
	0	/3.9°	4.0° \ 4.8° \ 4.8°	.0°	4.1°	
B/S	1	4.6°			5.0°	
$K\pi\pi\pi$	2	5.0°	5.1° /5.	$.3^{\circ}$	5.5°	
	5	5.6°	5.9° , 6.	$.0^{\circ}$	6.3°	

With background: $\sigma(\gamma) \sim 5^{\circ}$

With latest $r_B = 0.077$ value we expect sensitivity to decrease No background: $\sigma(\gamma) \sim 4.1^{\circ}$, effect with background under study

GLW method - γ from $B^0 \rightarrow D^0 K^{*0}$

■ Dunietz variant of Gronau-Wyler method makes use of interference between two colour-suppressed diagrams interfering via D^0 mixing :

■ Measuring the 6 decay rates $B^0 \rightarrow D^0(K\pi, \pi K, KK)K^{*0} + CP$ conjugates allows γ to be extracted without flavour tagging or proper time determination

GLW method - γ from $B^0 \rightarrow D^0 K^{*0}$

• LHCb expectations for 2 fb⁻¹ (γ =65°, Δ =0):

Mode (+ cc)	Yield	S/B _{bb} (90%CL)
$B^0 \to D^0 \ (K^+\pi^-) \ K^{*0}$	3.4k	> 2
$B^0 \to D^0 (K^-\pi^+) K^{*0}$	0.5k	> 0.3
$B^0 \to D^0_{CP} (K^+K^-) K^{*0}$	0.6k	> 0.3

$$\rightarrow \sigma(\gamma) \sim 8^{\circ}$$
 in one year

• Work ongoing to understand biases introduced by DCS amplitude in D-> $K\pi$

γ from $B \rightarrow KK$, $\pi\pi$

■ Measure time dependant asymmetries for $B_d \rightarrow \pi\pi$ and $B_s \rightarrow KK$ to determine A_{dir} and A_{mix}

$$A_{CP}(t) = A_{dir} \cos(\Delta m \ t) + A_{mix} \sin(\Delta m \ t)$$

- $\blacksquare A_{dir}$ and A_{mix} depend on
 - $-\gamma$
 - -Mixing phases ϕ_d or ϕ_s
 - $-Penguin/Tree\ ratio = de^{i\theta}$
- ϕ_d and ϕ_s from $J/\psi\phi$ and $J/\psi Ks$
- •U-spin symmetry: $d_{\pi\pi} = d_{KK}$, $\theta_{\pi\pi} = \theta_{KK}$
- ■4 observables, 3 unknowns: solve for γ

 $26K B_d \rightarrow \pi \pi / year, B/S < 0.7$ $37K B_d \rightarrow KK / year, B/S < 0.3$

 $\sigma(\gamma)\sim 5^{\circ}$

Angle α from $B_d \rightarrow \pi^0 \pi^+ \pi^-$

- Selection based on multivariate analysis
- Use resolved and merged π^0
- Expect 14k events per year, B/S < 1

11-parameter likelihood₅₀
fit to time-dependent
Dalitz plot:

 $n^2(\pi^0\pi^-)$

10

5

 $m^2(\pi^0\pi^+)$

 $\rho^0\pi^0$

 $o^-\pi^+$

Dalitz plot analysis

(Quinn Snyder method)

 $\sigma(\alpha)\sim 10^{\circ}$ with 2 fb⁻¹

B_s mixing: Δm_s

$$CDF: \Delta m_s = 17.33^{+0.42}_{-0.21} \pm 0.07 \quad ps^{-1}$$

$$D0:17 < \Delta m_s < 21 \ ps^{-1} \ @90\% \ c.l.$$

LHCb:

Measured using $B_s \rightarrow D_s^- \pi^+$ 80k events in one year, B/S<0.3

Given the low value of Δm_s , LHCb will be able to measure it with much less than $2fb^{-1}$

High precision expected in one year:

$$\sigma_{stat}(\Delta m_s) \sim 0.01 \ ps^{-1}$$

$$B_s \rightarrow D_{s^-} \pi^+$$

Distribution of unmixed sample after 1 year (2 fb⁻¹) for Δm_s = 20 ps⁻¹

Very good resolution for oscillations: time-dependent analyses with B_s decays, B_s mixing phase, CP violation in the mixing...

B_s mixing phase

 ϕ_s is very small in SM: $\phi_s = -2\chi = -0.036 \pm 0.003$ (CKM fitter) Sensitive probe of new physics

Use $B_s \rightarrow J/\Psi \phi$ (~120k events/year expected, S/B>3) Final state contains CP-even and CP-odd contributions

Angular analysis to separate CP even and CP odd

$$\sigma(\sin \phi_s) \sim 0.03$$
 and $\sigma(\Delta \Gamma_s/\Gamma_s) \sim 0.02$ (with $\Delta m_s = 20 \text{ ps}^{-1}$) in 1 year

Pure CP modes $B \rightarrow J/\Psi \eta$ ($\gamma \gamma, \pi^+ \pi^- \pi^0$), $\eta_c \phi$ added: $\sigma(\sin \phi_s) \sim 0.013$ in 5 years

Angle γ from $B_s \rightarrow D_s K$

- Interference between 2 tree diagrams
 - insensitive to NP in Bs mixing
- Measure $\gamma + \phi_s$ from time-dependent rates of $B_s \rightarrow D_s^+ K^-$ and $B_s \rightarrow D_s^- K^+ + cc$
 - Mistag from $B_s \rightarrow D_s \pi$
 - Subtract ϕ_s measured with $B \rightarrow J/\Psi \Phi$

With 2 fb⁻¹, $\Delta m_s = 20 \text{ ps}^{-1}$, $\Delta \Gamma_s / \Gamma_s = 0.1$, $55 ^{\circ} < \gamma < 105 ^{\circ}$:

 $\sigma(\gamma)\sim 14^{\circ}$

B_s-B_s asymmetries after 5 years of data

$$A_{FB}$$
 in $B_d \rightarrow K^{*0} \mu^+ \mu^-$

Forward-backward asymmetry A_{FB} in the $\mu\mu$ rest-frame is sensitive to NP

SM branching ratio ~ 10⁻⁶

~
$$4400 B_d \rightarrow K^{*0} \mu^+ \mu^- events/year$$

B/S< 2.6

Further optimisation under way Signal yield improvement

With $10fb^{-1}$:
zero of $A_{FB}(s)$ located to ± 0.53 GeV²

Conclusions

- •LHCb will have excellent statistics for B decays, including B_s , B_c and b-baryons
- Large B_s sample in flavour specific and CP-eigenstates modes: unprecedented investigation of all B_s mixing parameter
 - → constrain/discover new physics
- Many measurements of CP asymmetry and rare decays
 - $\sigma(\alpha) \sim 10^{\circ}$
 - $\sigma(\phi_s)\sim 2^\circ$
 - $\sigma(\gamma) \sim 5^{\circ}$
- CP angles determined via channels with different sensitivity to new physics
- LHCb offers an excellent opportunity to spot new physics beyond Standard Model and will be ready in 2007

Spares

Tracking

Long tracks

⇒ highest quality for physics

Downstream tracks
Upstream tracks

⇒ needed for efficient K_S finding

⇒ lower p, worse p resolution, useful for RICH1 pattern recognition

Details on tracking: C.Jones' talk

Neutral reconstruction

Good efficiency for π^0 in $B^0 \rightarrow \pi^+ \pi \pi^0$, using both resolved (separate clusters) and merged cluster shapes in the calorimeter (unassociated to charged tracks)

Reconstruction efficiency ~53%

24/05/2006

HCP2006

31

Particle identification: leptons

 μ Efficiency = 94%

 π mis-ID rate 1.0%

Electron Efficiency = 78% π mis-ID rate 1.0%

Electron background: mostly secondary electrons and ghosts, rejected by PT cut

Lepton ID: ECAL, Muon chambers See C.Jones' talk

Particle identification: leptons

 μ Efficiency = 94%

 π mis-ID rate 1.0%

Electron Efficiency = 78% π mis-ID rate 1.0%

Electron background: mostly secondary electrons and ghosts, rejected by PT cut

Lepton ID: ECAL, Muon chambers See C.Jones' talk LHCb Physics programme

$$\begin{bmatrix} B_d^{\pm} \to D^0 K^{\pm} \\ B_d^0 \to D^0 K^{*0} \end{bmatrix} \gamma$$

B production , B_c , b-baryon physics

Rare decays

- Radiative penguin e.g. $B_d \rightarrow K^* \gamma$, $B_s \rightarrow \Phi \gamma$
- Electroweak penguin e.g. B_d → K*⁰ μ⁺μ⁻
- Gluonic penguin e.g. $B_s \rightarrow \Phi\Phi$, $B_d \rightarrow \Phi K_s$
- Rare box diagram e.g. B_s→ μ⁺μ⁻

γ from $B \rightarrow DK$, ADS method

Rates depend on 5 parameters: g, rB, dD rDkp (magnitude of the ratio between two D decays) dDKp (CP conserving strong phase difference)

$$\Gamma(B^{-} \to (K^{-}\pi^{+})_{D} K^{-}) \propto 1 + (r_{B} r_{D}^{K\pi})^{2} + 2r_{B} r_{D}^{K\pi} \cos \left(\delta_{B} - \delta_{D}^{K\pi} - \gamma\right) \qquad (1) \sim 30k$$

$$\Gamma(B^{-} \to (K^{+}\pi^{-})_{D} K^{-}) \propto r_{B}^{2} + (r_{D}^{K\pi})^{2} + 2r_{B} r_{D}^{K\pi} \cos \left(\delta_{B} + \delta_{D}^{K\pi} - \gamma\right) \qquad (2) \sim 1k$$

$$\Gamma(B^{+} \to (K^{+}\pi^{-})_{D} K^{+}) \propto 1 + (r_{B} r_{D}^{K\pi})^{2} + 2r_{B} r_{D}^{K\pi} \cos \left(\delta_{B} - \delta_{D}^{K\pi} + \gamma\right) \qquad (3) \sim 30k$$

$$\Gamma(B^{+} \to (K^{-}\pi^{+})_{D} K^{+}) \propto r_{B}^{2} + (r_{D}^{K\pi})^{2} + 2r_{B} r_{D}^{K\pi} \cos \left(\delta_{B} + \delta_{D}^{K\pi} + \gamma\right) \qquad (4) \sim 1k$$

For 2 fb-1 50 times more than B-factories

Suppressed rates (2) and (4) have O(1) interference effects since $rB \sim rD$ so particularly sensitive to g

Relative rates more unknown than equations Use other decays e.g. Kppp or KK,pp

$\sin 2\beta$ with $B^0 \rightarrow J/\psi K_S$

Very well measured at B-factories
In LHCb will be important check of
CPV analyses and tagging performances

~ $240K B^0 \rightarrow J/\Psi K_s$ events/year

 $\sigma_{stat}(\sin 2\beta) \sim 0.02$ in one year of data taking

B_s mixing: Δm_s

 $CDF: \Delta m_s = 17.33^{+0.42}_{-0.21} \pm 0.07 \quad ps^{-1}$

 $D0:17 < \Delta m_s < 21 \ ps^{-1} \ @90\% \ c.l.$

LHCb:

Measured using $B_s \rightarrow D_s^- \pi + 80K$ events in one year, B/S < 0.3

High precision expected in one year:

$$\sigma_{stat}(\Delta m_s) \sim 0.01 \ ps^{-1}$$

Distribution of unmixed sample after 1 year (2 fb⁻¹)

Very good resolution for oscillations, so we can measure CP asymmetry in Bs system

$$B_s \rightarrow \mu^+ \mu^-$$

Branching ratio $\sim 3.5 \times 10$ -9 in SM Sensitive to new physics, can be strongly enhanced by SUSY

LHCb aims for 2σ measurement in 2 years Difficult to get reliable estimate of expected background

LHCb performance with 2fb⁻¹ (1 year)

	Channel	Yield*	B _{bb} /S	Precision
γ	$B_s \rightarrow D_s K$	5.4k	<1	σ(γ) ≈ 14°
	$B_d \to \pi\pi$	26k	<0.7	
	$B_s \rightarrow KK$	37k	0.3	σ (γ) ≈ 6 °
	$B_d \rightarrow D^0(K^-\pi^+)K^{*0}$	0.5k	<0.3	
	$B_d \rightarrow D^0(K^+\pi^-)K^{*0}$	2.4k	<2	σ (γ) ≈ 8°
	$B_d \rightarrow D_{CP}(K^+K^-)K^{*0}$	0.6k	<0.3	
	$B^- \rightarrow D^0(K^-\pi^+)K^-$	60k	0.5	
	$B^- \rightarrow D^0(K^+\pi^-)K^-$	2k	0.5	$\sigma(\gamma) \approx 5^{\circ}$
α	$B_d \rightarrow \pi^0 \pi^- \pi^+$	14k	0.8	σ(α) ≈ 10°
φ _s	B _s → J/ΨΦ	125k	0.3	
	$B_s \rightarrow J/\Psi \eta$	12k	2-3	$\sigma(\phi_s) \approx 2^{\circ}$
	$B_s \rightarrow \eta_c \Phi$	3k	0.7	
Δm _s	$B_s \rightarrow D_s \pi$	80k	0.3	Δm _s up to 68 ps ⁻¹
β	$B_d \rightarrow J/\Psi K_S$	216k	0.8	σ(sin2β) ≈ 0.022
rare	$B_d \rightarrow K^* \mu^+ \mu^-$	4.4k	<2.6	C ₇ eff/C ₉ eff with 13% error
decays	$B_s \rightarrow \mu^+\mu^-$	17	<5.7	NP search
	$B_d \rightarrow K^*\gamma$	35k	<0.7	$\sigma(A_{CP}^{dir}) \approx 0.01$

(*) Untagged annual yields after trigger, stat. only

B physics: LHC vs B factories

	e+e- → Y(4S) → BB PEPII, KEKB	pp→bbX (\sqrt{s} = 14 TeV, Δt_{bunch} =25 ns) LHCb	_	
Production σ_{bb}	1 nb	~500 μb		
Typical bb rate	10 Hz	100 kHz		
bb purity	~1/4	$\sigma_{\rm bb}/\sigma_{\rm inel}$ = 0.6% Trigger is a major issue !		
Pileup	0	0.5		
b-hadron types	B+B- (50%) B ⁰ B ⁰ (50%)	B+B- (40%), B ⁰ (40%), B _s (10%) B _c (< 0.1%), b-baryons (10%)		
b-hadron boost	Small	Large (decay vertexes well separated)		
Production vertex	Not reconstructed	Reconstructed (many tracks)		
Neutral B mixing	Coherent B ⁰ B ⁰ pair mixing	Incoherent B ⁰ and B _s mixing (extra flavour-tagging dilution));)	
Event structure	BB pair alone	Many particles not associated with the two b hadrons		

Measuring $\gamma: B^+ \rightarrow D^0(K^0\pi^+\pi^-)K^+$

Giri, Grossman, Soffer, Zupan (PRD 68, 054018 (2003))

- Use three body Cabibbo allowed decays of the $D^0/\overline{D^0}$
 - $BR(D^0 \rightarrow K^0\pi^+\pi^-) = (5.97 \pm 0.35)\%$
 - $BR(D^0 \rightarrow K^* \pi) = (3.9 \pm 0.3)\%$, $BR(D^0 \rightarrow K_s \rho) = (1.55^{+0.12}_{-0.16})\%$...
- Large strong phases between the intermediate resonances allow the extraction of r_B , δ and γ by studying the Dalitz distribution of events

$$A^{-} = f(m_{-}^{2}, m_{+}^{2}) + r_{B}e^{i(-\gamma+\delta)}f(m_{+}^{2}, m_{-}^{2})$$

$$A^{+} = f(m_{+}^{2}, m_{-}^{2}) + r_{B}e^{i(\gamma+\delta)}f(m_{-}^{2}, m_{+}^{2})$$

where $m_{\pm} = K_S^0 \pi^{\pm}$ invariant mass $f(m_{\pm}^2, m_m^2)$ Dalitz amplitudes

$$|A^{-}|^{2} = |f(m_{-}^{2}, m_{+}^{2})|^{2} + r_{B}^{2} |f(m_{+}^{2}, m_{-}^{2})|^{2} + 2r_{B}\Re(f(m_{+}^{2}, m_{-}^{2})f^{*}(m_{-}^{2}, m_{+}^{2})e^{i(-\gamma+\delta)})$$

Dalitz model

- B factories consider 16 resonances + non resonant component
- At present dominant systematic error of 11° from model uncertainties
- Scope for improvement:
 - Alternative fit to Dalitz plane with full partial wave analysis of non-resonant component
 - CLEO-C and B factories will improve statistics to measure the Dalitz plot
 - Use model independent binned technique loss of statistical power
 - CLEO-C correlated data could be used directly in a model independent binned treatment

Measuring γ from B-factories

hep-ex/0507101

 D^* and D combined

$$\gamma = 67^{\circ} \pm 28^{\circ} \pm 13^{\circ} \pm 11^{\circ}$$

Exp. systematic

Dalitz Model error

Belle:

PRD 70, 072003 (2004)

$$\gamma = 68^{\circ} \pm 14^{\circ} \pm 13^{\circ} \pm 11^{\circ}$$

$$r_{\rm B} = 0.21 \pm 0.08$$

$B^+ \rightarrow D^0(K^0\pi^+\pi^-)K^+$: Dalitz plot

- Regions of the Dalitz plot with the largest interference are most sensitive to γ
- Need good understanding of Dalitz amplitudes
- •Use isobar model from Belle/Babar with:

$$f(m_{+}^{2}, m_{-}^{2}) = \sum_{j=1}^{N} a_{j} e^{i\alpha_{j}} A_{j}(m_{+}^{2}, m_{-}^{2}) + b e^{i\beta}$$

Breit-Wigner + non-resonant

• B simulated with γ =64.7°, δ =150°, r_b =0.16

Annual yield: $B^+ \rightarrow D^0(K^0\pi^+\pi^-)K^+$

 Acceptance studied with phase space MC

$$\varepsilon_{\text{tot}} = 0.10\%$$
(selection + L0L1 trigger = 5.8%)

- Luminosity = 2 fb^{-1}
- BR($B^+ \to D^0(K_s \pi^+ \pi^-) K^+$) = 7.5 x 10⁻⁶
- Expected ~6000 events/year
 not including High Level Trigger
 efficiency (or > 1300 including it)
 - 0.5 < B/S < 3.2 @ 90%CL

$B^+ \to D^0 (K^0 K^+ K^-) K^+$

- Same method works for $D^0 \rightarrow K^0K^+K^-$ decay
 - Reduced BR: $BR(D^0 \rightarrow K^0K^+K^-) = (1.03\pm0.10)\%$
 - But less background because two more particle identification constraints from RICH should substantially reduce background also narrow phase space
- Acceptance evaluation in progress
- Dalitz model has fewer resonances (ϕ , a_0) but complex threshold effects (Babar hep-ex/0507026)
 - Separate study of sensitivity is necessary

Dalitz: $B^0 \to D^0(K^0\pi^+\pi^-) K^{*0}(K^+\pi^-)$

- Same method works as in charged B
 - BF Reduced by factor 10: $BF(B^0 \to D^0(K^0 \pi^+ \pi^-)K^{*0})$ $with K^{*0} \to K^+ \pi^-$ = 6.4x 10⁻⁷
 - Higher interference $(r_b \sim 1)$
- Dalitz model imported from Belle; amplitudes and phases of resonances taken from CLEO (hep-ex/0207067)

$B^{\pm} \rightarrow D^{\pm} K Conclusions$

ADS method:

- Candidate for LHCb's most precise measurement of γ
- Expected annual signal yields (Luminosity = 2 fb⁻¹):

 - D(KK)K ...?
 - D(Κπππ)Κ
- With our present understanding of the background a precision on γ of \sim 5° looks feasible with 2fb⁻¹ of data

Dalitz method:

- Expected annual signal yield ~6000 without High Level Trigger efficiency (to be compared to ~300 at B-factories)
- 0.5 < B/S < 3.2 @90% CL
- Result on the sensitivity to γ will be available within the time scale of this workshop

$B^0 \rightarrow D^0 K^{*0}$ Conclusions

• GLW method:

■ Expected annual signal yields (Luminosity = 2 fb⁻¹):

```
■ D(K^+\pi^-)K^{*0} ~ 2.4k B/S >2

■ D(K^-\pi^+)K^{*0} ~ 0.5k B/S>0.3

■ D^0_{CP}(K^+K^-)K^{*0} ~0.6k B/S>0.3
```

- $\sigma(\gamma) \sim 8^{\circ}$ in one year
- Work ongoing to understand biases introduced by DCS amplitude in $D->K\pi$

Dalitz method:

- Expected annual signal yield < 600 due to BR 10 times lower than the charged one and the presence of one more final state particle
- Background rejection under investigation
- Sensitivity to γ in progress